enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energymomentum_relation

    The energy and momentum of an object measured in two inertial frames in energymomentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.

  3. Stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Stress–energy_tensor

    The stress–energy tensor, sometimes called the stress–energymomentum tensor or the energymomentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.

  4. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The Dyson series can be alternatively rewritten as a sum over Feynman diagrams, where at each vertex both the energy and momentum are conserved, but where the length of the energy-momentum four-vector is not necessarily equal to the mass, i.e. the intermediate particles are so-called off-shell. The Feynman diagrams are much easier to keep track ...

  5. Electromagnetic stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_stress...

    The element of the stress–energy tensor represents the flux of the component with index of the four-momentum of the electromagnetic field, ⁠ ⁠, going through a hyperplane. It represents the contribution of electromagnetism to the source of the gravitational field (curvature of spacetime) in general relativity .

  6. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    This is different from the parabolic energy-momentum relation for classical particles. Thus, in practice, the linearity or the non-parabolicity of the energy-momentum relation is considered as a key feature for relativistic particles. These two types of relativistic particles are remarked as massless and massive, respectively.

  7. Mach's principle - Wikipedia

    en.wikipedia.org/wiki/Mach's_principle

    In such universes Mach's principle can be stated as the distribution of matter and field energy-momentum (and possibly other information) at a particular moment in the universe determines the inertial frame at each point in the universe (where "a particular moment in the universe" refers to a chosen Cauchy surface). [7]: 188–207

  8. Energy–momentum - Wikipedia

    en.wikipedia.org/wiki/Energymomentum

    Energymomentum may refer to: Four-momentum; Stress–energy tensor; Energymomentum relation This page was last edited on 28 December 2019, at 10:37 (UTC). Text ...

  9. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    From this valuable relation (a very generic continuity equation), three important concepts may be concisely written: conservation of mass, conservation of momentum, and conservation of energy. Validity is retained if φ is a vector, in which case the vector-vector product in the second term will be a dyad .