enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In a significance test, the null hypothesis is rejected if the p-value is less than or equal to a predefined threshold value , which is referred to as the alpha level or significance level. α {\displaystyle \alpha } is not derived from the data, but rather is set by the researcher before examining the data.

  3. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; [4] and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. [5]

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level. The critical region [C α, ∞) is realized as the tail of the standard normal distribution.

  5. Misuse of p-values - Wikipedia

    en.wikipedia.org/wiki/Misuse_of_p-values

    This means that the p-value is a statement about the relation of the data to that hypothesis. [2] The 0.05 significance level is merely a convention. [3] [5] The 0.05 significance level (alpha level) is often used as the boundary between a statistically significant and a statistically non-significant p-value. However, this does not imply that ...

  6. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    For a given significance level in a two-tailed test for a test statistic, the corresponding one-tailed tests for the same test statistic will be considered either twice as significant (half the p-value) if the data is in the direction specified by the test, or not significant at all (p-value above ) if the data is in the direction opposite of ...

  7. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    The solution to this question would be to report the p-value or significance level α of the statistic. For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H 0. Or, if we say, the statistic is performed at level α, like 0.05, then we allow to falsely reject ...

  8. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    A desired significance level α would then define a corresponding "rejection region" (bounded by certain "critical values"), a set of values t is unlikely to take if was correct. If we reject H 0 {\displaystyle H_{0}} in favor of H 1 {\displaystyle H_{1}} only when the sample t takes those values, we would be able to keep the probability of ...

  9. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.