Search results
Results from the WOW.Com Content Network
Here are equivalent characterizations of real trees which can be used as definitions: 1) (similar to trees as graphs) A real tree is a geodesic metric space which contains no subset homeomorphic to a circle. [1] 2) A real tree is a connected metric space (,) which has the four points condition [2] (see figure):
This is an example of divide and conquer, which reduces the size of the problem to be more manageable. AI Feynman also transforms the inputs and outputs of the mystery function in order to produce a new function which can be solved with other techniques, and performs dimensional analysis to reduce the number of independent variables involved.
A real-valued function f on the interval [a, b] is continuous if and only if for every hyperreal x in the interval *[a, b], we have: *f(x) ≅ *f(st(x)). Similarly, Theorem. A real-valued function f is differentiable at the real value x if and only if for every infinitesimal hyperreal number h, the value
P(B | A) is the proportion of outcomes with property B out of outcomes with property A, and P(A | B) is the proportion of those with A out of those with B (the posterior). The role of Bayes' theorem can be shown with tree diagrams. The two diagrams partition the same outcomes by A and B in opposite orders, to obtain the inverse probabilities ...
A vine V on n variables is a nested set of connected trees where the edges in the first tree are the nodes of the second tree, the edges of the second tree are the nodes of the third tree, etc. A regular vine or R-vine on n variables is a vine in which two edges in tree j are joined by an edge in tree j + 1 only if these edges share a common ...
The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring), often denoted as ′,, ¯,,, or ; its probability is given by P(not A) = 1 − P(A). [31] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) = 1 − 1 / 6 = 5 / 6 .
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .
Misuse of statistics can be both inadvertent and intentional, and the book How to Lie with Statistics, [72] by Darrell Huff, outlines a range of considerations. In an attempt to shed light on the use and misuse of statistics, reviews of statistical techniques used in particular fields are conducted (e.g. Warne, Lazo, Ramos, and Ritter (2012)).