Search results
Results from the WOW.Com Content Network
Congruence modulo m is a congruence relation, meaning that it is an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo m is denoted a ≡ b (mod m). The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b).
Modular form. In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory.
Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.
n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
In 1973, Pierre Deligne and Michael Rapoport showed that the ring of modular forms M(Γ) is finitely generated when Γ is a congruence subgroup of SL(2, Z). [2]In 2003, Lev Borisov and Paul Gunnells showed that the ring of modular forms M(Γ) is generated in weight at most 3 when is the congruence subgroup () of prime level N in SL(2, Z) using the theory of toric modular forms. [3]
The group Λ consists of all modular transformations for which a and d are odd and b and c are even. Another important family of congruence subgroups are the modular group Γ 0 (N) defined as the set of all modular transformations for which c ≡ 0 (mod N), or equivalently, as the subgroup whose matrices become upper triangular upon reduction ...
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
The standard model is a quantum field theory, meaning its fundamental objects are quantum fields, which are defined at all points in spacetime. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. These fields are.