enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Congruence modulo m is a congruence relation, meaning that it is an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo m is denoted a ≡ b (mod m). The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b).

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.

  4. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .

  5. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...

  6. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if n and a are coprime positive integers, then is congruent to modulo n, where denotes Euler's totient function; that is. {\displaystyle a^ {\varphi (n)}\equiv 1 {\pmod {n}}.} In 1736, Leonhard Euler published a proof of Fermat's ...

  7. Triple bar - Wikipedia

    en.wikipedia.org/wiki/Triple_bar

    Without proper rendering support, you may see question marks, boxes, or other symbols. The triple bar or tribar, ≡, is a symbol with multiple, context-dependent meanings indicating equivalence of two different things. Its main uses are in mathematics and logic. It has the appearance of an equals sign = with a third line.

  8. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  9. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.