Search results
Results from the WOW.Com Content Network
In mathematics, especially abstract algebra, loop theory and quasigroup theory are active research areas with many open problems.As in other areas of mathematics, such problems are often made public at professional conferences and meetings.
One can normalize a Cayley table of a quasigroup in the same manner as a reduced Latin square. Then the quasigroup associated to a reduced Latin square has a (two sided) identity element (namely, the first element among the row headers). A quasigroup with a two sided identity is called a loop. Some, but not all, loops are groups.
In mathematics, the theory of Latin squares is an active research area with many open problems. As in other areas of mathematics, such problems are often made public at professional conferences and meetings. Problems posed here appeared in, for instance, the Loops (Prague) conferences and the Milehigh (Denver) conferences.
A quasigroup with an idempotent element is called a pique ("pointed idempotent quasigroup"); this is a weaker notion than a loop but common nonetheless because, for example, given an abelian group, (A, +), taking its subtraction operation as quasigroup multiplication yields a pique (A, −) with the group identity (zero) turned into a "pointed ...
Download as PDF; Printable version; ... This category is intended for all unsolved problems in mathematics, ... List of problems in loop theory and quasigroup theory;
Talk: List of problems in loop theory and quasigroup theory. Add languages. Page contents not supported in other languages. ... Download as PDF; Printable version
Problems in loop theory and quasigroup theory. Add languages. Add links. ... Print/export Download as PDF; Printable version;
Given a loop L, one can define an incidence geometric structure called a 3-net. Conversely, after fixing an origin and an order of the line classes, a 3-net gives rise to a loop. Choosing a different origin or exchanging the line classes may result in nonisomorphic coordinate loops. However, the coordinate loops are always isotopic.