Search results
Results from the WOW.Com Content Network
The arrangement of chromatin within the nucleus may also play a role in nuclear stress and restoring nuclear membrane deformation by mechanical stress. When chromatin is condensed, the nucleus becomes more rigid. When chromatin is decondensed, the nucleus becomes more elastic with less force exerted on the inner nuclear membrane. This ...
The list of chromatin remodeling enzymes is extensive and many have specific roles within the nucleus. For example, in 2016 Wiechens et al. identified two human enzymes, SNF2H and SNF2L, that are active in regulating CTCF binding and therefore affect genome organization and transcription of many genes.
Structure and function of the nuclear lamina. The nuclear lamina lies on the inner surface of the inner nuclear membrane (INM), where it serves to maintain nuclear stability, organize chromatin and bind nuclear pore complexes (NPCs) and a steadily growing list of nuclear envelope proteins (purple) and transcription factors (pink).
The inner nuclear membrane encloses the nucleoplasm, and is covered by the nuclear lamina, a mesh of intermediate filaments which stabilizes the nuclear membrane as well as being involved in chromatin function. [9] It is connected to the outer membrane by nuclear pores which penetrate the membranes.
Diagram of the nucleus showing the ribosome-studded outer nuclear membrane, nuclear pores, DNA (complexed as chromatin), and the nucleolus. The nucleus contains nearly all of the cell's DNA, surrounded by a network of fibrous intermediate filaments called the nuclear matrix, and is enveloped in a double membrane called the nuclear envelope.
The cytoplasm contains the cytoskeleton, a network of protein filaments found in all cells, while the nucleoplasm is believed to contain the nuclear matrix, a hypothetically analogous network of filaments that organizes the organelles and genetic information within the nucleus.
Such inner-nuclear-membrane proteins (INMs) may function simply by restricting the movement of bound chromatin, by recruiting chromatin-remodeling proteins, or through inherent enzyme activity. INM:chromatin interactions causes some segments of chromatin to be more exposed to the nucleoplasm than others.
Azurophilic granule proteins such as myeloperoxidase (MPO) and neutrophil elastase (NE) then enter the nucleus and further the decondensation process, resulting in the rupture of the nuclear envelope. The uncondensed chromatin enters the cytoplasm where additional granule and cytoplasmic proteins are added to the early-stage NET.