Search results
Results from the WOW.Com Content Network
Basic units of chromatin structure the structure of chromatin within a chromosome. Chromatin undergoes various structural changes during a cell cycle. Histone proteins are the basic packers and arrangers of chromatin and can be modified by various post-translational modifications to alter chromatin packing (histone modification).
Lamin structures that make up the veil, such as LEM3, bind chromatin and disrupting their structure inhibits transcription of protein-coding genes. [21] Like the components of other intermediate filaments, the lamin monomer contains an alpha-helical domain used by two monomers to coil around each other, forming a dimer structure called a coiled ...
Basic units of chromatin structure. A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins [1] and resembles thread wrapped around a spool. The nucleosome is the fundamental subunit of chromatin.
The solenoid structure can increase this to be 40 times smaller. [2] When DNA is compacted into the solenoid structure can still be transcriptionally active in certain areas. [7] It is the secondary chromatin structure that is important for this transcriptional repression as in vivo active genes are assembled in large tertiary chromatin ...
Nucleoplasm is quite similar to the cytoplasm, with the main difference being that nucleoplasm is found inside the nucleus while the cytoplasm is located inside the cell, outside of the nucleus. Their ionic compositions are nearly identical due to the ion pumps and permeability of the nuclear envelope, however, the proteins in these two fluids ...
The hierarchical structure through which DNA is packaged into chromosomes. The organization of DNA within the nucleus begins with the 10 nm fiber, a "beads-on-a-string" structure [24] made of nucleosomes connected by 20-60bp linkers.
The nuclear envelope has many nuclear pores that allow materials to move between the cytosol and the nucleus. [4] Intermediate filament proteins called lamins form a structure called the nuclear lamina on the inner aspect of the inner nuclear membrane and give structural support to the nucleus. [4]
As architectural DNA components that organize the genome of eukaryotes into functional units within the cell nucleus, S/MARs mediate structural organization of the chromatin within the nucleus. These elements constitute anchor points of the DNA for the chromatin scaffold and serve to organize the chromatin into structural domains.