enow.com Web Search

  1. Ad

    related to: fractional calculus formula

Search results

  1. Results from the WOW.Com Content Network
  2. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    Fractional calculus was introduced in one of Niels Henrik Abel's early papers [3] where all the elements can be found: the idea of fractional-order integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order differentiation and integration can be considered as the same generalized ...

  3. Cauchy formula for repeated integration - Wikipedia

    en.wikipedia.org/wiki/Cauchy_formula_for...

    The two formulas agree when . Both the Cauchy formula and the Riemann–Liouville integral are generalized to arbitrary dimensions by the Riesz potential . In fractional calculus , these formulae can be used to construct a differintegral , allowing one to differentiate or integrate a fractional number of times.

  4. Riemann–Liouville integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Liouville_integral

    In mathematics, the Riemann–Liouville integral associates with a real function: another function I α f of the same kind for each value of the parameter α > 0.The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, I α f is an iterated antiderivative of f of order α.

  5. Differintegral - Wikipedia

    en.wikipedia.org/wiki/Differintegral

    In fractional calculus, an area of mathematical analysis, ... It is a generalization of the Cauchy formula for repeated integration to arbitrary order.

  6. Cauchy's integral formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_formula

    In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis.It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function.

  7. Weyl integral - Wikipedia

    en.wikipedia.org/wiki/Weyl_integral

    In mathematics, the Weyl integral (named after Hermann Weyl) is an operator defined, as an example of fractional calculus, on functions f on the unit circle having integral 0 and a Fourier series. In other words there is a Fourier series for f of the form = with a 0 = 0

  8. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well.

  9. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.

  1. Ad

    related to: fractional calculus formula