Search results
Results from the WOW.Com Content Network
The nuclear lamina consists of two components, lamins and nuclear lamin-associated membrane proteins. The lamins are type V intermediate filaments which can be categorized as either A-type (lamin A, C) or B-type (lamin B 1, B 2) according to homology of their DNA sequences, biochemical properties and cellular localization during the cell cycle.
The nuclear matrix composition on human cells has been proven to be cell type and tumor specific. It has been clearly demonstrated that the nuclear matrix composition in a tumor is different from its normal counterparts. [10] This fact could be useful to characterize cancer markers and to predict the disease even earlier.
During mitosis, lamins are phosphorylated by Mitosis-Promoting Factor (MPF), which drives the disassembly of the lamina and the nuclear envelope. This allows chromatin to condense and the DNA to be replicated. After chromosome segregation, dephosphorylation of nuclear lamins by a phosphatase promotes reassembly of the nuclear envelope.
IF proteins are universal among animals in the form of a nuclear lamin. The Hydra has an additional "nematocilin" derived from the lamin. Cytoplasmic IFs (type I-IV) are only found in Bilateria; they also arose from a gene duplication event involving "type V" nuclear lamin. In addition, a few other diverse types of eukaryotes have lamins ...
The nuclear envelope is made up of two lipid bilayer membranes, an inner nuclear membrane and an outer nuclear membrane. These membranes are connected to each other by nuclear pores. Two sets of intermediate filaments provide support for the nuclear envelope. An internal network forms the nuclear lamina on the inner nuclear membrane. [7]
The lamin family of proteins make up the matrix and are highly conserved in evolution. During mitosis, the lamina matrix is reversibly disassembled as the lamin proteins are phosphorylated. Lamin proteins are thought to be involved in nuclear stability, chromatin structure and gene expression. Vertebrate lamins consist of two types, A and B.
Likewise, during the same period, the nuclear lamina is also disassembled, a process regulated by phosphorylation of the lamins by protein kinases such as the CDC2 protein kinase. [66] Towards the end of the cell cycle, the nuclear membrane is reformed, and around the same time, the nuclear lamina are reassembled by dephosphorylating the lamins ...
That nuclear bodies co-isolated with the nuclear matrix, and were linked to the fibrogranular nuclear matrix component by projections from the surface of the nuclear bodies. [11] The primary components of the nuclear dots are the proteins sp100 nuclear antigen, LYSP100(a homolog of sp100), [ 12 ] ISG20 , [ 13 ] PML antigen , NDP55 and 53kDa ...