Search results
Results from the WOW.Com Content Network
A random variable is a measurable function: from a sample space as a set of possible outcomes to a measurable space.The technical axiomatic definition requires the sample space to be a sample space of a probability triple (,,) (see the measure-theoretic definition).
the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and; there is a notion of conjugation of random variables, satisfying (XY) * = Y * X * and X ** = X for all random variables X,Y and coinciding with complex conjugation if X is a constant.
If a random variable admits a density function, then the characteristic function is its Fourier dual, in the sense that each of them is a Fourier transform of the other. If a random variable has a moment-generating function (), then the domain of the characteristic function can be extended to the complex plane, and
An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal , uniform , chi-squared , and others .
The second fundamental observation is that any random variable can be written as the difference of two nonnegative random variables. Given a random variable X, one defines the positive and negative parts by X + = max(X, 0) and X − = −min(X, 0). These are nonnegative random variables, and it can be directly checked that X = X + − X −.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In more formal probability theory, a random variable is a function X defined from a sample space Ω to a measurable space called the state space. [2] [a] If an element in Ω is mapped to an element in state space by X, then that element in state space is a realization.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .