enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.

  3. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis , where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals .

  4. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    Residual plots plot the difference between the actual data and the model's predictions: correlations in the residual plots may indicate a flaw in the model. Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the ...

  5. Partial residual plot - Wikipedia

    en.wikipedia.org/wiki/Partial_residual_plot

    In applied statistics, a partial residual plot is a graphical technique that attempts to show the relationship between a given independent variable and the response variable given that other independent variables are also in the model.

  6. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.

  7. Generalized additive model - Wikipedia

    en.wikipedia.org/wiki/Generalized_additive_model

    This will usually involve plotting the standardized residuals against fitted values and covariates to look for mean-variance problems or missing pattern, and may also involve examining Correlograms (ACFs) and/or Variograms of the residuals to check for violation of independence. If the model mean-variance relationship is correct then scaled ...

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Based on the assumption that the original data set is a realization of a random sample from a distribution of a specific parametric type, in this case a parametric model is fitted by parameter θ, often by maximum likelihood, and samples of random numbers are drawn from this fitted model. Usually the sample drawn has the same sample size as the ...

  9. Partial regression plot - Wikipedia

    en.wikipedia.org/wiki/Partial_regression_plot

    The residuals from the least squares linear fit to this plot are identical to the residuals from the least squares fit of the original model (Y against all the independent variables including Xi). The influences of individual data values on the estimation of a coefficient are easy to see in this plot.