Search results
Results from the WOW.Com Content Network
The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case. For waves on a string, or in a medium such as water, the amplitude is a displacement.
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
The Dirac equation is a relativistic wave equation detailing electromagnetic interactions. Dirac waves accounted for the fine details of the hydrogen spectrum in a completely rigorous way. The wave equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed.
The equation for the amplitude of a sinusoidal wave traveling to the right along the x-axis is (,) = where is the peak amplitude, = / is the wavenumber and = is the angular frequency of the wave.
A is the amplitude of the wave (the peak magnitude of the oscillation), φ is a phase offset , ω is the (temporal) angular frequency of the wave, describing how many radians it traverses per unit of time, and related to the period T by the equation ω = 2 π T , {\displaystyle \omega ={\tfrac {2\pi }{T}},}
Animation of the additive synthesis of a triangle wave with an increasing number of harmonics. See Fourier Analysis for a mathematical description.. It is possible to approximate a triangle wave with additive synthesis by summing odd harmonics of the fundamental while multiplying every other odd harmonic by −1 (or, equivalently, changing its phase by π) and multiplying the amplitude of the ...
A modulated wave resulting from adding two sine waves of identical amplitude and nearly identical wavelength and frequency. A common situation resulting in an envelope function in both space x and time t is the superposition of two waves of almost the same wavelength and frequency: [2]