Search results
Results from the WOW.Com Content Network
The Hertzsprung–Russell diagram (abbreviated as H–R diagram, HR diagram or HRD) is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosities and their stellar classifications or effective temperatures.
Stars found in the blue giant region of the HR diagram can be in very different stages of their lives, but all are evolved stars that have largely exhausted their core hydrogen supplies. In the simplest case, a hot luminous star begins to expand as its core hydrogen is exhausted, and first becomes a blue subgiant then a blue giant, becoming ...
The path which the star follows across the HR diagram is called an evolutionary track. [57] H–R diagram for two open clusters: NGC 188 (blue) is older and shows a lower turn off from the main sequence than M67 (yellow). The dots outside the two sequences are mostly foreground and background stars with no relation to the clusters.
Just as the AGB stars occur in almost the same region of the HR diagram as red supergiants, Wolf–Rayet stars can occur in the same region of the HR diagram as the hottest blue supergiants and main-sequence stars. The most massive and luminous main-sequence stars are almost indistinguishable from the supergiants they quickly evolve into.
The RGB stars are by far the most common type of giant star due to their moderate mass, relatively long stable lives, and luminosity. They are the most obvious grouping of stars after the main sequence on most HR diagrams, although white dwarfs are more numerous but far less luminous. Examples: Pollux, a K-type giant.
When the envelope of the star cools sufficiently it becomes convective, the star stops expanding, its luminosity starts to increase, and the star is ascending the red-giant branch of the Hertzsprung–Russell (H–R) diagram. [10] [12] Mira A is an old star, already shedding its outer layers into space
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The name derives from the shape of the evolutionary track on a Hertzsprung–Russell diagram which forms a loop towards the blue (i.e. hotter) side of the diagram, to a place called the blue giant branch. [1] Blue loops can occur for red supergiants, red-giant branch stars, or asymptotic giant branch stars. Some stars may undergo more than one ...