Search results
Results from the WOW.Com Content Network
In this case, one gets a parallel curve on the opposite side of the curve (see diagram on the parallel curves of a circle). One can easily check that a parallel curve of a line is a parallel line in the common sense, and the parallel curve of a circle is a concentric circle.
The concept of Parallel Coordinates is often said to originate in 1885 by a French mathematician Philbert Maurice d'Ocagne. [1] d'Ocagne sought a way to provide graphical calculation of mathematical functions using alignment diagrams called nomograms which used parallel axes with different scales. For example, a three-variable equation could be ...
Line art drawing of parallel lines and curves. In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three ...
asymptotes, which a curve approaches arbitrarily closely without touching it. [6] With respect to triangles we have: the Euler line, the Simson lines, and; central lines. For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7]
A contour line (also isoline, isopleth, isoquant or isarithm) of a function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. [1] [2] It is a plane section of the three-dimensional graph of the function (,) parallel to the (,)-plane. More generally, a contour line for a ...
Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations. The history of an object's location through time traces out a line or curve on a spacetime diagram, referred to as the object's world line.
Parallel – in the same direction. Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead. Depression – along a curve from a point on the horizon to the nadir ...
Hence: the evolute is the envelope of the normals of the given curve. At sections of the curve with ′ > or ′ < the curve is an involute of its evolute. (In the diagram: The blue parabola is an involute of the red semicubic parabola, which is actually the evolute of the blue parabola.)