enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  5. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of fluorescence resonance energy transfer , a technique that is used in molecular biology to study the interaction of suitable proteins .

  6. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  7. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    The Compton wavelength for this particle is the wavelength of a photon of the same energy. For photons of frequency f , energy is given by E = h f = h c λ = m c 2 , {\displaystyle E=hf={\frac {hc}{\lambda }}=mc^{2},} which yields the Compton wavelength formula if solved for λ .

  8. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    For example, the photons emitted by a radio station broadcast at the frequency ν = 100 MHz, have an energy content of νh = (1 × 10 8) × (6.6 × 10 −34) = 6.6 × 10 −26 J, where h is the Planck constant. The wavelength of the station is λ = c/ν = 3 m, so that λ/(2π) = 48 cm and the volume is 0.109 m 3.

  9. Hydrogen line - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_line

    where λ is the wavelength of an emitted photon, ν is its frequency, E is the photon energy, h is the Planck constant, and c is the speed of light in a vacuum. In a laboratory setting, the hydrogen line parameters have been more precisely measured as: λ = 21.106 114 054 160 (30) cm ν = 1 420 405 751.768(2) Hz. in a vacuum. [3]