Search results
Results from the WOW.Com Content Network
Some of the proofs of Fermat's little theorem given below depend on two simplifications.. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1.This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p.
Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it in 1640. It is called the "little theorem" to distinguish it from Fermat's Last Theorem. [3]
Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.
Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Sir Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were believed to be impossible to prove using previous ...
It was while researching perfect numbers that he discovered Fermat's little theorem. He invented a factorization method—Fermat's factorization method—and popularized the proof by infinite descent, which he used to prove Fermat's right triangle theorem which includes as a corollary Fermat's Last Theorem for the case n = 4.
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
Linear congruence theorem; Method of successive substitution; Chinese remainder theorem; Fermat's little theorem. Proofs of Fermat's little theorem; Fermat quotient; Euler's totient function. Noncototient; Nontotient; Euler's theorem; Wilson's theorem; Primitive root modulo n. Multiplicative order; Discrete logarithm; Quadratic residue. Euler's ...
This includes Fermat's little theorem (generalised by Euler to non-prime moduli); the fact that = + if and only if ; initial work towards a proof that every integer is the sum of four squares (the first complete proof is by Joseph-Louis Lagrange (1770), soon improved by Euler himself [55]); the lack of non-zero integer solutions to ...