enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. F-distribution - Wikipedia

    en.wikipedia.org/wiki/F-distribution

    In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem.

  4. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The null hypothesis is rejected if the F calculated from the data is greater than the critical value of the F-distribution for some desired false-rejection probability (e.g. 0.05). Since F is a monotone function of the likelihood ratio statistic, the F-test is a likelihood ratio test.

  5. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    where F 1,n − 1 is the F-distribution with 1 and n − 1 degrees of freedom (see also Student's t-distribution). The final step here is effectively the definition of a random variable having the F-distribution.

  6. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Proof: We will prove this statement using the portmanteau lemma, part A. First we want to show that (X n, c) converges in distribution to (X, c). By the portmanteau lemma this will be true if we can show that E[f(X n, c)] → E[f(X, c)] for any bounded continuous function f(x, y). So let f be such arbitrary

  7. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...

  8. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Despite the newly abstract situation, this definition is extremely similar in nature to the very simplest definition of expected values, given above, as certain weighted averages. This is because, in measure theory, the value of the Lebesgue integral of X is defined via weighted averages of approximations of X which take on finitely many values ...

  9. Statistical proof - Wikipedia

    en.wikipedia.org/wiki/Statistical_proof

    The term proof descended from its Latin roots (provable, probable, probare L.) meaning to test. [7] [8] Hence, proof is a form of inference by means of a statistical test. Statistical tests are formulated on models that generate probability distributions.