Search results
Results from the WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
Assuming the field is weak and the motion of the electron non-relativistic, we have the total energy of the electron approximately equal to its rest energy, and the momentum reducing to the classical value, and so the second equation may be written + which is of order v / c - thus at typical energies and velocities, the bottom ...
The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.
The quantity μ eff is effectively dimensionless, but is often stated as in units of Bohr magneton (μ B). [12] For substances that obey the Curie law, the effective magnetic moment is independent of temperature. For other substances μ eff is temperature dependent, but the dependence is small if the Curie-Weiss law holds and the Curie ...
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
where is the Bohr magneton, is the total electronic angular momentum, and is the Landé g-factor. A more accurate approach is to take into account that the operator of the magnetic moment of an electron is a sum of the contributions of the orbital angular momentum L → {\displaystyle {\vec {L}}} and the spin angular momentum S → ...
Then the square of α is the ratio between the Hartree energy (27.2 eV = twice the Rydberg energy = approximately twice its ionization energy) and the electron rest energy (511 keV). α 2 {\displaystyle \alpha ^{2}} is the ratio of the potential energy of the electron in the first circular orbit of the Bohr model of the atom and the energy m e ...
The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted g e: = | | =, where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron.