Search results
Results from the WOW.Com Content Network
= 2.54 × 10 −2 m/s: kilometre per hour: km/h ≡ 1 km/h = 2. 7 × 10 −1 m/s knot: kn ≡ 1 nmi/h = 1.852 km/h = 0.51 4 m/s knot (Admiralty) kn ≡ 1 NM (Adm)/h = 1.853 184 km/h [29] = 0.514 77 3 m/s mach number: M: Ratio of the speed to the speed of sound [note 1] in the medium (unitless). ≈ 340 m/s in air at sea level ≈ 295 m/s in air ...
gram per cubic metre: g/m3 g/m 3: 1.0 g/m 3 (0.0017 lb/cu yd) g/m3 kg/m3; g/m3 lb/ft3 (g/cm3 lb/cuft) g/m3 lb/yd3 (g/cm3 lb/cuyd) Imperial & US customary: pound per cubic foot: lb/ft3 lb/cu ft 1.0 lb/cu ft (0.016 g/cm 3) lb/ft3 kg/m3 (lb/cu ft g/m3) lb/ft3 g/m3 (lb/cu ft g/m3) pound per cubic yard: lb/yd3 lb/cu yd 1.0 lb/cu yd (0.59 kg/m 3) lb ...
A trade gallon is a unit of volume for standard plant containers in the horticultural industries. It equals 3 US liquid quarts or 0.75 US gallons (2.8 L; 0.62 imp gal), [ 1 ] [ 2 ] [ 3 ] although some sources state that a trade gallon equals 2.7 litres (0.71 US gal).
Metric prefixes; Text Symbol Factor or; yotta Y 10 24: 1 000 000 000 000 000 000 000 000: zetta Z 10 21: 1 000 000 000 000 000 000 000: exa E 10 18: 1 000 000 000 000 000 000: peta P 10 15: 1 000 000 000 000 000: tera T
vehicle-kilometre (vkm [1]) as a measure of traffic flow, determined by multiplying the number of vehicles on a given road or traffic network by the average length of their trips measured in kilometres. [2] vehicle-mile (vehicle miles traveled, or VMT [1]) same as before but measures the trip expressed in miles.
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass m through a surface per unit time t. The overdot on the m is Newton's notation for a time derivative . Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating ...