Search results
Results from the WOW.Com Content Network
Most species whose cells have nuclei are diploid, meaning they have two complete sets of chromosomes, one from each of two parents; each set contains the same number of chromosomes, and the chromosomes are joined in pairs of homologous chromosomes. However, some organisms are polyploid. Polyploidy is especially common in plants.
All normal diploid individuals have some small fraction of cells that display polyploidy. Human diploid cells have 46 chromosomes (the somatic number, 2n) and human haploid gametes (egg and sperm) have 23 chromosomes (n). Retroviruses that contain two copies of their RNA genome in each viral particle are also said to be diploid.
Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human somatic cell having 45 or 47 chromosomes instead of the usual 46. [1] [2] It does not include a difference of one or more complete sets of chromosomes. A cell with any number of complete chromosome sets is called a euploid cell. [1]
Polyploidy is also a well known source of speciation, as offspring, which have different numbers of chromosomes compared to parent species, are often unable to interbreed with non-polyploid organisms. Whole genome duplications are thought to be less detrimental than aneuploidy as the relative dosage of individual genes should be the same.
[1] [2] While endoreduplication is often limited to specific cell types in animals, it is considerably more widespread in plants, such that polyploidy can be detected in the majority of plant tissues. [5] Polyploidy and aneuploidy are common phenomena in cancer cells. [6]
Normal cells make errors in chromosome segregation in 1% of cell divisions, whereas cells with CIN make these errors approximately 20% of cell divisions. Because aneuploidy is a common feature in tumour cells, the presence of aneuploidy in cells does not necessarily mean CIN is present; a high rate of errors is definitive of CIN. [6]
The main goals of diploidization are: (1) To ensure proper gene dosage; and (2) to maintain stable cellular division processes. This process does not need to occur rapidly for all chromosomes in one or few steps. In recent polyploid events, segments of the genome may still remain in a tetraploid status.
Polyploid cells have multiple copies of chromosomes and haploid cells have single copies. Karyotypes can be used for many purposes; such as to study chromosomal aberrations , cellular function, taxonomic relationships, medicine and to gather information about past evolutionary events ( karyosystematics ).