Search results
Results from the WOW.Com Content Network
A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...
This core convection occurs in stars where the CNO cycle contributes more than 20% of the total energy. As the star ages and the core temperature increases, the region occupied by the convection zone slowly shrinks from 20% of the mass down to the inner 8% of the mass. [25] The Sun produces on the order of 1% of its energy from the CNO cycle.
In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. [1] Because electrophiles accept electrons, they are Lewis acids . [ 2 ] Most electrophiles are positively charged , have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.
In the context of a specific chemical reaction between NH 3 and Me 3 B, a lone pair from NH 3 will form a dative bond with the empty orbital of Me 3 B to form an adduct NH 3 •BMe 3. The terminology refers to the contributions of Gilbert N. Lewis. [2] The terms nucleophile and electrophile are sometimes interchangeable with Lewis base and ...
The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide , R-Br under basic conditions, where the attacking nucleophile is hydroxyl ( OH − ) and the leaving group is bromide ( Br − ).
Although the Sun is a star, its photosphere has a low enough temperature of 6,000 K (5,730 °C; 10,340 °F), and therefore molecules can form. Water has been found on the Sun, and there is evidence of H 2 in white dwarf stellar atmospheres. [2] [4] Cooler stars include absorption band spectra that are
As it does so, it replaces a weaker nucleophile, which then becomes a leaving group; the remaining positive or partially positive atom becomes an electrophile. The whole molecular entity of which the electrophile and the leaving group are part is usually called the substrate. [1] The most general form for the reaction may be given as
The Flippin–Lodge angle is one of two angles used by organic and biological chemists studying the relationship between a molecule's chemical structure and ways that it reacts, for reactions involving "attack" of an electron-rich reacting species, the nucleophile, on an electron-poor reacting species, the electrophile.