enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.

  3. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  4. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    where B is the incomplete beta function. A Poisson compounded with Log( p )-distributed random variables has a negative binomial distribution . In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ...

  5. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis). The logistic distribution is a special case of the Tukey lambda distribution.

  6. Empirical distribution function - Wikipedia

    en.wikipedia.org/.../Empirical_distribution_function

    In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...

  7. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    The normal distribution is perhaps the most important case. Because the normal distribution is a location-scale family, its quantile function for arbitrary parameters can be derived from a simple transformation of the quantile function of the standard normal distribution, known as the probit function. Unfortunately, this function has no closed ...

  8. Johnson's SU-distribution - Wikipedia

    en.wikipedia.org/wiki/Johnson's_SU-distribution

    This comes as a superior alternative to using the Normal distribution to model asset returns. An R package, JSUparameters , was developed in 2021 to aid in the estimation of the parameters of the best-fitting Johnson's S U {\displaystyle S_{U}} -distribution for a given dataset.

  9. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    Extreme values like maximum one-day rainfall and river discharge per month or per year often follow a log-normal distribution. [12] The log-normal distribution, however, needs a numeric approximation. As the log-logistic distribution, which can be solved analytically, is similar to the log-normal distribution, it can be used instead.