Search results
Results from the WOW.Com Content Network
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.
The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1]. The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1).
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
If X has cumulative distribution function F X, then the inverse of the cumulative distribution F X (X) is a standard uniform (0,1) random variable; If X is a normal (μ, σ 2) random variable then e X is a lognormal (μ, σ 2) random variable. Conversely, if X is a lognormal (μ, σ 2) random variable then log X is a normal (μ, σ 2) random ...
The modified lognormal power-law (MLP) function is a three parameter function that can be used to model data that have characteristics of a log-normal distribution and a power law behavior. It has been used to model the functional form of the initial mass function (IMF). Unlike the other functional forms of the IMF, the MLP is a single function ...
In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.
The cumulative property follows quickly by considering the cumulant-generating function: + + = [(+ +)] = ( [] []) = [] + + [] = + + (), so that each cumulant of a sum of independent random variables is the sum of the corresponding cumulants of the addends. That is, when the addends are statistically ...
Skewed distributions can be inverted (or mirrored) by replacing in the mathematical expression of the cumulative distribution function (F) by its complement: F'=1-F, obtaining the complementary distribution function (also called survival function) that gives a mirror image. In this manner, a distribution that is skewed to the right is ...