Search results
Results from the WOW.Com Content Network
However materials may be characterized as "lossy" if they remove energy from a wave, usually converting it into heat. This is termed "absorption." A material which absorbs a wave's energy, either in transmission or reflection, is characterized by a refractive index which is complex. The amount of absorption will generally depend on the ...
Rayleigh waves have energy losses only in two dimensions and are hence more destructive in earthquakes than conventional bulk waves, such as P-waves and S-waves, which lose energy in all three directions. A Love wave is a surface wave having horizontal waves that are shear or transverse to the direction of propagation. They usually travel ...
As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons. Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of ...
An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).
The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers, or more.
X-rays are electromagnetic waves with a wavelength less than about 10 −9 m (greater than 3 × 10 17 Hz and 1240 eV). A smaller wavelength corresponds to a higher energy according to the equation E = h c/λ. (E is Energy; h is the Planck constant; c is the speed of light; λ is wavelength.) When an X-ray photon collides with an atom, the atom ...
In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. [a] In the SI system, it has units watts per square metre (W/m 2), or kg⋅s −3 in base units.
This implies that if two EM waves have the same intensity, but different frequencies, the one with the higher frequency "contains" fewer photons, since each photon is more energetic. When EM waves are absorbed by an object, the energy of the waves is converted to heat (or converted to electricity in case of a photoelectric material). This is a ...