enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Argument-dependent name lookup - Wikipedia

    en.wikipedia.org/wiki/Argument-dependent_name_lookup

    In the C++ programming language, argument-dependent lookup (ADL), or argument-dependent name lookup, [1] applies to the lookup of an unqualified function name depending on the types of the arguments given to the function call. This behavior is also known as Koenig lookup, as it is often attributed to Andrew Koenig, though he is not its inventor ...

  3. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  4. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    To keep the computational load reasonable, the mappings used by SVM schemes are designed to ensure that dot products of pairs of input data vectors may be computed easily in terms of the variables in the original space, by defining them in terms of a kernel function (,) selected to suit the problem. [8]

  5. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  6. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    The ranking SVM algorithm is a learning retrieval function that employs pairwise ranking methods to adaptively sort results based on how 'relevant' they are for a specific query. The ranking SVM function uses a mapping function to describe the match between a search query and the features of each of the possible results.

  7. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  8. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels. As an example, a sample instance might be a natural language sentence, and the output label is an annotated parse tree. Training a classifier consists of ...

  9. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1]