Search results
Results from the WOW.Com Content Network
The term significance does not imply importance here, and the term statistical significance is not the same as research significance, theoretical significance, or practical significance. [1] [2] [18] [19] For example, the term clinical significance refers to the practical importance of a treatment effect. [20]
Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level.
The 0.05 significance level is merely a convention. [3] [5] The 0.05 significance level (alpha level) is often used as the boundary between a statistically significant and a statistically non-significant p-value. However, this does not imply that there is generally a scientific reason to consider results on opposite sides of any threshold as ...
In a significance test, the null hypothesis is rejected if the p-value is less than or equal to a predefined threshold value , which is referred to as the alpha level or significance level. α {\displaystyle \alpha } is not derived from the data, but rather is set by the researcher before examining the data.
If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...
For example, assume that one were to test 1,000 null hypotheses, all of which are true, and (as is conventional in single hypothesis testing) to reject null hypotheses with a significance level of 0.05; due to random chance, one would expect 5% of the results to appear significant (P < 0.05), yielding 50 false positives (rejections of the null ...
For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0.05. In statistics , Fisher's method , [ 1 ] [ 2 ] also known as Fisher's combined probability test , is a technique for data fusion or " meta-analysis " (analysis of analyses).
[13] [14] [15] The apparent contradiction stems from the combination of a discrete statistic with fixed significance levels. [16] [17] Consider the following proposal for a significance test at the 5%-level: reject the null hypothesis for each table to which Fisher's test assigns a p-value equal to or smaller than 5%. Because the set of all ...