enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arterial resistivity index - Wikipedia

    en.wikipedia.org/wiki/Arterial_resistivity_index

    The arterial resistivity index (also called as Resistance index, abbreviated as RI), developed by Léandre Pourcelot , is a measure of pulsatile blood flow that reflects the resistance to blood flow caused by microvascular bed distal to the site of measurement.

  3. Velocity time integral - Wikipedia

    en.wikipedia.org/wiki/Velocity_time_integral

    Velocity Time Integral is a clinical Doppler ultrasound measurement of blood flow, equivalent to the area under the velocity time curve. The product of VTI (cm/stroke) and the cross sectional area of a valve (cm2) yields a stroke volume (cm3/stroke), which can be used to calculate cardiac output.

  4. Mechanical index - Wikipedia

    en.wikipedia.org/wiki/Mechanical_index

    Mechanical index (MI) is a unitless ultrasound metric. It is defined as [1] =, where P r is the peak rarefaction pressure of the ultrasound wave , derated by an attenuation factor to account for in-tissue acoustic attenuation; f c is the center frequency of the ultrasound pulse .

  5. Ultrasound energy - Wikipedia

    en.wikipedia.org/wiki/Ultrasound_energy

    Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.

  6. Pulse-repetition frequency - Wikipedia

    en.wikipedia.org/wiki/Pulse-repetition_frequency

    For example, the speed of sound in water is 1,497 m/s, and the human body is about 0.5 m thick, so the PRF for ultrasound images of the human body should be less than about 2 kHz (1,497/0.5). As another example, ocean depth is approximately 2 km, so sound takes over a second to return from the sea floor.

  7. Aortic valve area calculation - Wikipedia

    en.wikipedia.org/wiki/Aortic_valve_area_calculation

    There are many ways to calculate the valve area of aortic stenosis. The most commonly used methods involve measurements taken during echocardiography. For interpretation of these values, the area is generally divided by the body surface area, to arrive at the patient's optimal aortic valve orifice area.

  8. Phased array ultrasonics - Wikipedia

    en.wikipedia.org/wiki/Phased_array_ultrasonics

    By changing the pulse delays, the computer can scan the beam of ultrasound in a raster pattern across the tissue. Echoes reflected by different density tissue, received by the transducers, build up an image of the underlying structures. Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with ...

  9. Strain rate imaging - Wikipedia

    en.wikipedia.org/wiki/Strain_rate_imaging

    Strain rate imaging is a method in echocardiography (medical ultrasound) for measuring regional or global deformation of the myocardium (heart muscle). The term "deformation" refers to the myocardium changing shape and dimensions during the cardiac cycle.