Search results
Results from the WOW.Com Content Network
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
joule (J) L 2 M T −2: Energy density? Energy per volume J⋅m −3: L −1 M T −2: intensive Entropy: S: Logarithmic measure of the number of available states of a system J/K L 2 M T −2 Θ −1: extensive, scalar Force: F →: Transfer of momentum per unit time newton (N = kg⋅m⋅s −2) L M T −2: extensive, vector Frequency: f ...
The dimensionless constants that arise in the results obtained, such as the C in the Poiseuille's Law problem and the κ in the spring problems discussed above, come from a more detailed analysis of the underlying physics and often arise from integrating some differential equation. Dimensional analysis itself has little to say about these ...
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =
A Fermi problem (or Fermi quiz, Fermi question, Fermi estimate), also known as an order-of-magnitude problem (or order-of-magnitude estimate, order estimation), is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations.