enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    The first-order energy shift is not well defined, since there is no unique way to choose a basis of eigenstates for the unperturbed system. The various eigenstates for a given energy will perturb with different energies, or may well possess no continuous family of perturbations at all.

  3. Isotopic shift - Wikipedia

    en.wikipedia.org/wiki/Isotopic_shift

    Using perturbation theory, the first-order energy shift can be calculated as = >, which requires the knowledge of accurate many-electron wave function. Due to the 1 / M N {\displaystyle 1/M_{N}} term in the expression, the specific mass shift also decrease as 1 / M N 2 {\displaystyle 1/M_{N}^{2}} as mass of nucleus increase, same as normal mass ...

  4. Phase transition - Wikipedia

    en.wikipedia.org/wiki/Phase_transition

    First-order phase transitions exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable. [6] The various solid/liquid/gas transitions are classified as first-order transitions because they involve a discontinuous change in density, which is the (inverse of the) first derivative of the free ...

  5. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    Calculations based on the Bohr–Sommerfeld model were able to accurately explain a number of more complex atomic spectral effects. For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr ...

  6. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    The first-order perturbation matrix on basis of the unperturbed rigid rotor function is non-zero and can be diagonalized. This gives shifts and splittings in the rotational spectrum. Quantitative analysis of these Stark shift yields the permanent electric dipole moment of the symmetric top molecule.

  7. Quantum phase transition - Wikipedia

    en.wikipedia.org/wiki/Quantum_phase_transition

    Diagram of temperature (T) and pressure (p) showing the quantum critical point (QCP) and quantum phase transitions. Talking about quantum phase transitions means talking about transitions at T = 0: by tuning a non-temperature parameter like pressure, chemical composition or magnetic field, one could suppress e.g. some transition temperature like the Curie or Néel temperature to 0 K.

  8. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    The fine structure energy corrections can be obtained by using perturbation theory.To perform this calculation one must add three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.

  9. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...