enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola: the midpoints of parallel chords lie on a line. Hyperbola: the midpoint of a chord is the midpoint of the corresponding chord of the asymptotes. The midpoints of parallel chords of a hyperbola lie on a line through the center (see diagram). The points of any chord may lie on different branches of the hyperbola.

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    In standard form the parabola will always pass through the origin. For a rectangular or equilateral hyperbola, one whose asymptotes are perpendicular, there is an alternative standard form in which the asymptotes are the coordinate axes and the line x = y is the principal axis.

  5. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  6. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Euler’s work made the natural logarithm a standard mathematical tool, and elevated mathematics to the realm of transcendental functions. The hyperbolic coordinates are formed on the original picture of G. de Saint-Vincent, which provided the quadrature of the hyperbola, and transcended the limits of algebraic functions.

  7. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

  8. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The transverse axis of a hyperbola coincides with the major axis. [ 4 ] In a hyperbola, a conjugate axis or minor axis of length 2 b {\displaystyle 2b} , corresponding to the minor axis of an ellipse, can be drawn perpendicular to the transverse axis or major axis, the latter connecting the two vertices (turning points) of the hyperbola, with ...

  9. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    The Weierstrass coordinates of a point are the Cartesian coordinates of the point when the point is mapped in the hyperboloid model of the hyperbolic plane, the x-axis is mapped to the (half) hyperbola ( , , +) and the origin is mapped to the point (0,0,1). [1]