Search results
Results from the WOW.Com Content Network
See illustration of a cross-section of these nested shells, at right. The s orbitals for all n numbers are the only orbitals with an anti-node (a region of high wave function density) at the center of the nucleus. All other orbitals (p, d, f, etc.) have angular momentum, and thus avoid the nucleus (having a wave node at the nucleus).
The Hückel energy of the molecule is , where the sum is over all Hückel orbitals, is the occupancy of orbital i, set to be 2 for doubly-occupied orbitals, 1 for singly-occupied orbitals, and 0 for unoccupied orbitals, and is the energy of orbital i. Thus, the delocalization energy, conventionally a positive number, is defined as
Electron atomic and molecular orbitals A Bohr diagram of lithium. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1]
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
The three dumbbell-shaped p-orbitals have equal energy and are oriented mutually perpendicularly (or orthogonally). The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron ...
Since the orbitals resulting from the ns orbital are either buried in bonding or elevated well above the valence, the ns orbitals are not relevant to describing the valence. Depending on the geometry of the final complex, either all three of the n p orbitals or portions of them are involved in bonding, similar to the n s orbitals.
Antibonding orbitals are often labelled with an asterisk (*) on molecular orbital diagrams. In homonuclear diatomic molecules, σ* (sigma star) antibonding orbitals have no nodal planes passing through the two nuclei, like sigma bonds, and π* (pi star) orbitals have one nodal plane passing through the two nuclei, like pi bonds.
These natural localized sets are intermediate between basis atomic orbitals (AO) and molecular orbitals (MO): Atomic orbital → NAO → NHO → NBO → NLMO → Molecular orbital. Natural (localized) orbitals are used in computational chemistry to calculate the distribution of electron density in atoms and in bonds between atoms. They have the ...