Search results
Results from the WOW.Com Content Network
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
The problems associated with the standard formulation of relativistic quantum mechanics provide a clue to the validity of Hypothesis I. These problems included negative probabilities, hole theory, the Klein paradox , non-covariant expectation values, and so forth.
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
Relativistic mass, idea used by some researchers. [9] The defining feature of special relativity is the replacement of the Galilean transformations of classical mechanics by the Lorentz transformations. (See Maxwell's equations of electromagnetism.)
The relativistic expressions for E and p obey the relativistic energy–momentum relation: [12] = where the m is the rest mass, or the invariant mass for systems, and E is the total energy. The equation is also valid for photons, which have m = 0 : E 2 − ( p c ) 2 = 0 {\displaystyle E^{2}-(pc)^{2}=0} and therefore E = p c {\displaystyle E=pc}
These two types of relativistic particles are remarked as massless and massive, respectively. In experiments, massive particles are relativistic when their kinetic energy is comparable to or greater than the energy = corresponding to their rest mass. In other words, a massive particle is relativistic when its total mass-energy is at least twice ...
The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.