Search results
Results from the WOW.Com Content Network
Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.
Carbon-based compounds form the basis of all known life on Earth, and the carbon-nitrogen-oxygen cycle provides a small portion of the energy produced by the Sun, and most of the energy in larger stars (e.g. Sirius). Although it forms an extraordinary variety of compounds, most forms of carbon are comparatively unreactive under normal conditions.
In a neutral atom, the system will emit a photon of the difference in energy. However, if the lower state is in an inner shell, a phenomenon known as the Auger effect may take place where the energy is transferred to another bound electrons causing it to go into the continuum. This allows one to multiply ionize an atom with a single photon.
An account of the early history of scanning electron microscopy has been presented by McMullan. [2] [3] Although Max Knoll produced a photo with a 50 mm object-field-width showing channeling contrast by the use of an electron beam scanner, [4] it was Manfred von Ardenne who in 1937 invented [5] a microscope with high resolution by scanning a very small raster with a demagnified and finely ...
An atomic force microscope on the left with controlling computer on the right Atomic force microscopy [ 1 ] (AFM) is a type of SPM, with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit .
A molecule may be homonuclear, that is, it consists of atoms of one chemical element, e.g. two atoms in the oxygen molecule (O 2); or it may be heteronuclear, a chemical compound composed of more than one element, e.g. water (two hydrogen atoms and one oxygen atom; H 2 O).
Note how the size of the carbon appears smaller than the hydrogen. The importance of stereochemistry was not then recognised and the model is essentially topological (it should be a 3-dimensional tetrahedron). Jacobus Henricus van 't Hoff and Joseph Le Bel introduced the concept of chemistry in three dimensions of space, that is, stereochemistry.
Although diamonds (top left) and graphite (top right) are identical in chemical composition—being both pure carbon—X-ray crystallography revealed the arrangement of their atoms (bottom). In diamond, the carbon atoms are arranged tetrahedrally and held together by single covalent bonds. By contrast, graphite is composed of stacked sheets.