enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absement - Wikipedia

    en.wikipedia.org/wiki/Absement

    Absement changes as an object remains displaced and stays constant as the object resides at the initial position. It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement.

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  5. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The last expression is the second derivative of position (x) with respect to time. On the graph of a function , the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the ...

  6. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units ) or standard gravities per second ( g 0 /s).

  7. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Continuing the above example using a velocity as the function, you can integrate it from the starting time up to any given time to obtain a distance function whose derivative is that velocity. (To obtain your highway-marker position, you would need to add your starting position to this integral and to take into account whether your travel was ...

  8. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    The action is typically represented as an integral over time, taken along the path of the system between the initial time and the final time of the development of the system: [11] =, where the integrand L is called the Lagrangian. For the action integral to be well-defined, the trajectory has to be bounded in time and space.

  9. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    derivative of position with respect to time (dx/dt, velocity) has dimension T −1 L—length from position, time due to the gradient; the second derivative (d 2 x/dt 2 = d(dx/dt) / dt, acceleration) has dimension T −2 L. Likewise, taking an integral adds the dimension of the variable one is integrating with respect to, but in the numerator.