Search results
Results from the WOW.Com Content Network
The spectral type is not a numerical quantity, but the sequence of spectral types is a monotonic series that reflects the stellar surface temperature. Modern observational versions of the chart replace spectral type by a color index (in diagrams made in the middle of the 20th Century, most often the B-V color) of the stars.
The Henry Draper Catalogue (HD) is an astronomical star catalogue published between 1918 and 1924, giving spectroscopic classifications for 225,300 stars; it was later expanded by the Henry Draper Extension (HDE), published between 1925 and 1936, which gave classifications for 46,850 more stars, and by the Henry Draper Extension Charts (HDEC), published from 1937 to 1949 in the form of charts ...
The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O type) to the coolest (M type).
Spectral measurement devices are referred to as spectrometers, spectrophotometers, spectrographs or spectral analyzers. Most spectroscopic analysis in the laboratory starts with a sample to be analyzed, then a light source is chosen from any desired range of the light spectrum, then the light goes through the sample to a dispersion array ...
The optical image (left) shows clouds of dust, while the infrared image (right) displays a number of young stars. Credit: C. R. O'Dell-Vanderbilt University, NASA, and ESA. Color–color diagrams are often used in infrared astronomy to study star forming regions. Stars form in clouds of dust. As the star continues to contract, a circumstellar ...
The spectral signature of an object is a function of the incidental EM wavelength and material interaction with that section of the electromagnetic spectrum. The measurements can be made with various instruments, including a task specific spectrometer , although the most common method is separation of the red, green, blue and near infrared ...
It is an ageing A-type star of spectral class A0 III [7] located 280 ± 20 light-years away [8] from the Solar System. At the age of 385 million years, [9] it is exhausting hydrogen at its core and leaving the main sequence. γ Sextantis is the second brightest star in the constellation with an apparent magnitude of 5.05.
Spectral imaging may use the infrared, the visible spectrum, the ultraviolet, x-rays, or some combination of the above. It may include the acquisition of image data in visible and non-visible bands simultaneously, illumination from outside the visible range, or the use of optical filters to capture a specific spectral range. It is also possible ...