Search results
Results from the WOW.Com Content Network
In computer science, the Krauss wildcard-matching algorithm is a pattern matching algorithm. Based on the wildcard syntax in common use, e.g. in the Microsoft Windows command-line interface, the algorithm provides a non-recursive mechanism for matching patterns in software applications, based on syntax simpler than that typically offered by regular expressions.
In the normal case, we only have to look at one or two characters for each wrong position to see that it is a wrong position, so in the average case, this takes O(n + m) steps, where n is the length of the haystack and m is the length of the needle; but in the worst case, searching for a string like "aaaab" in a string like "aaaaaaaaab", it ...
This uses information gleaned during the pre-processing of the pattern in conjunction with suffix match lengths recorded at each match attempt. Storing suffix match lengths requires an additional table equal in size to the text being searched. The Raita algorithm improves the performance of Boyer–Moore–Horspool algorithm. The searching ...
Scheduler : There is a scheduling between join patterns (e.g. a round-robin scheduler, first-match scheduler). [6] Design patterns : The join-pattern is first of all a behavioral and a concurrency pattern. Concurrent programming : It's execute in a concurrent way. Pattern matching : The join-pattern works with matching tasks.
In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition , the match usually has to be exact: "either it will or will not be a match."
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
Generalizations of the same idea can be used to find more than one match of a single pattern, or to find matches for more than one pattern. To find a single match of a single pattern, the expected time of the algorithm is linear in the combined length of the pattern and text, although its worst-case time complexity is the product of the two ...
Like Boyer–Moore, Boyer–Moore–Horspool preprocesses the pattern to produce a table containing, for each symbol in the alphabet, the number of characters that can safely be skipped. The preprocessing phase, in pseudocode, is as follows (for an alphabet of 256 symbols, i.e., bytes):