Search results
Results from the WOW.Com Content Network
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series .
Lambda architecture depends on a data model with an append-only, immutable data source that serves as a system of record. [2]: 32 It is intended for ingesting and processing timestamped events that are appended to existing events rather than overwriting them. State is determined from the natural time-based ordering of the data.
Wes McKinney is an American software developer and businessman. He is the creator and "Benevolent Dictator for Life" (BDFL) of the open-source pandas package for data analysis in the Python programming language, and has also authored three versions of the reference book Python for Data Analysis.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Data classification can be viewed as a multitude of labels that are used to define the type of data, especially on confidentiality and integrity issues. [1] Data classification is typically a manual process; however, there are tools that can help gather information about the data. [2] Data sensitivity levels are often proposed to be considered. [2]
A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.
This can lead to replication of data, data structure and functionality, together with the attendant costs of that duplication in development and maintenance. Therefore, data definitions should be made as explicit and easy to understand as possible to minimize misinterpretation and duplication.
Data independence is the type of data transparency that matters for a centralized DBMS. [1] It refers to the immunity of user applications to changes made in the definition and organization of data. Application programs should not, ideally, be exposed to details of data representation and storage.