Search results
Results from the WOW.Com Content Network
Rigid-body-like vortex v ∝ r: Parallel flow with shear Irrotational vortex v ∝ 1 / r where v is the velocity of the flow, r is the distance to the center of the vortex and ∝ indicates proportionality. Absolute velocities around the highlighted point: Relative velocities (magnified) around the highlighted point Vorticity ≠ 0 ...
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. [1] The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors.
The Rankine vortex is a model that assumes a rigid-body rotational flow where r is less than a fixed distance r 0, and irrotational flow outside that core regions. In a viscous fluid, irrotational flow contains viscous dissipation everywhere, yet there are no net viscous forces, only viscous stresses. [7]
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
A rigid-body displacement consists of a simultaneous translation and rotation of the body without changing its shape or size. ... or the flow of fluids, it is ...
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...