Search results
Results from the WOW.Com Content Network
Magnetic hysteresis can be characterized in various ways. In general, the magnetic material is placed in a varying applied H field, as induced by an electromagnet, and the resulting magnetic flux density (B field) is measured, generally by the inductive electromotive force introduced on a pickup coil nearby the sample.
The current is proportional to the magnetization of the sample - the greater the induced current, the greater the magnetization. As a result, typically a hysteresis curve will be recorded [5] and from there the magnetic properties of the sample can be deduced. The idea of vibrating sample came from D. O. Smith's [6] vibrating-coil magnetometer.
Hysteresis loop Induction B as function of field strength H for H varying between H min and H max; for ferromagnetic material the B has different values for H going up and down, therefore a plot of the function forms a loop instead of a curve joining two points; for perminvar type materials, the loop is a "rectangle" (Domain Structure of Perminvar Having a Rectangular Hysteresis Loop, Williams ...
Typically the coercivity of a magnetic material is determined by measurement of the magnetic hysteresis loop, also called the magnetization curve, as illustrated in the figure above. The apparatus used to acquire the data is typically a vibrating-sample or alternating-gradient magnetometer. The applied field where the data line crosses zero is ...
The effect of a magnetic hysteresis loop is measured using instruments such as a vibrating sample magnetometer; and the zero-field intercept is a measure of the remanence. In physics this measure is converted to an average magnetization (the total magnetic moment divided by the volume of the sample) and denoted in equations as M r .
An adsorption isotherm showing hysteresis is said to be of Type IV (for a wetting adsorbate) or Type V (for a non-wetting adsorbate), and hysteresis loops themselves are classified according to how symmetric the loop is. [17] Adsorption hysteresis loops also have the unusual property that it is possible to scan within a hysteresis loop by ...
Ferromagnetic materials (like iron) are composed of microscopic regions called magnetic domains, that act like tiny permanent magnets that can change their direction of magnetization. Before an external magnetic field is applied to the material, the domains' magnetic fields are oriented in random directions, effectively cancelling each other ...
When no external field is applied, the antiferromagnetic structure corresponds to a vanishing total magnetization. In an external magnetic field, a kind of ferrimagnetic behavior may be displayed in the antiferromagnetic phase, with the absolute value of one of the sublattice magnetizations differing from that of the other sublattice, resulting in a nonzero net magnetization.