Search results
Results from the WOW.Com Content Network
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
ΔE is the fluid's mechanical energy loss, ξ is an empirical loss coefficient, which is dimensionless and has a value between zero and one, 0 ≤ ξ ≤ 1, ρ is the fluid density, v 1 and v 2 are the mean flow velocities before and after the expansion. In case of an abrupt and wide expansion, the loss coefficient is equal to one. [1]
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...
Most charts or tables indicate the type of friction factor, or at least provide the formula for the friction factor with laminar flow. If the formula for laminar flow is f = 16 / Re , it is the Fanning factor f, and if the formula for laminar flow is f D = 64 / Re , it is the Darcy–Weisbach factor f D.
Minor losses in pipe flow are a major part in calculating the flow, pressure, or energy reduction in piping systems. Liquid moving through pipes carries momentum and energy due to the forces acting upon it such as pressure and gravity.
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
The equation for head loss in pipes, also referred to as slope, S, expressed in "feet per foot of length" vs. in 'psi per foot of length' as described above, with the inside pipe diameter, d, being entered in feet vs. inches, and the flow rate, Q, being entered in cubic feet per second, cfs, vs. gallons per minute, gpm, appears very similar.