Search results
Results from the WOW.Com Content Network
Euler's great interest in number theory can be traced to the influence of his friend in the St. Peterburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat, and developed some of Fermat's ideas. One focus of Euler's work was to link the nature of prime distribution with ideas in ...
Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər; [b] German: [ˈleːɔnhaʁt ˈʔɔʏlɐ] ⓘ, Swiss Standard German: [ˈleɔnhard ˈɔʏlər]; 15 April 1707 – 18 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician, and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of ...
Frontispiece of the first volume, first edition (1768) of Lettres a une princesse d'Allemagne sur divers sujets de physique & de philosophie. Letters to a German Princess, On Different Subjects in Physics and Philosophy (French: Lettres à une princesse d'Allemagne sur divers sujets de physique et de philosophie) were a series of 234 letters written by the mathematician Leonhard Euler between ...
In mathematics and physics, many topics are named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, equation, formula, identity, number (single or sequence), or other mathematical entity.
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions [ 2 ] For convenience, the problem may also be solved by ...
Institutiones calculi differentialis (Foundations of differential calculus) is a mathematical work written in 1748 by Leonhard Euler and published in 1755. It lays the groundwork for the differential calculus. It consists of a single volume containing two internal books; there are 9 chapters in book I, and 18 in book II.
Mechanica (Latin: Mechanica sive motus scientia analytice exposita; 1736) is a two-volume work published by mathematician Leonhard Euler which describes analytically the mathematics governing movement. Euler both developed the techniques of analysis and applied them to numerous problems in mechanics, [1] notably in later publications the ...