enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    Then, the image of the -excircle under is a circle internally tangent to sides , and the circumcircle of , that is, the -mixtilinear incircle. Therefore, the A {\displaystyle A} -mixtilinear incircle exists and is unique, and a similar argument can prove the same for the mixtilinear incircles corresponding to B {\displaystyle B} and C ...

  3. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...

  4. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle (that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

  5. Smallest-circle problem - Wikipedia

    en.wikipedia.org/wiki/Smallest-circle_problem

    Chakraborty and Chaudhuri [11] propose a linear-time method for selecting a suitable initial circle and a pair of boundary points on that circle. Each step of the algorithm includes as one of the two boundary points a new vertex of the convex hull, so if the hull has h vertices this method can be implemented to run in time O(nh).

  6. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The nine-point circle is tangent to the incircle and excircles. In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: [28] [29] The midpoint of each side of the triangle; The foot ...

  7. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    The point of intersection of angle bisectors of the 3 angles of triangle ABC is the incenter (denoted by I). The incircle (whose center is I) touches each side of the triangle. In geometry , the incenter of a triangle is a triangle center , a point defined for any triangle in a way that is independent of the triangle's placement or scale.

  8. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The perpendicular bisectors of all chords of a circle are concurrent at the center of the circle. The lines perpendicular to the tangents to a circle at the points of tangency are concurrent at the center. All area bisectors and perimeter bisectors of a circle are diameters, and they are concurrent at the circle's center.

  9. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.