Ads
related to: laminar flow calculation
Search results
Results from the WOW.Com Content Network
The specific calculation of the Reynolds number, and the values where laminar flow occurs, will depend on the geometry of the flow system and flow pattern. The common example is flow through a pipe , where the Reynolds number is defined as
If the formula for laminar flow is f = 16 / Re , it is the Fanning factor f, and if the formula for laminar flow is f D = 64 / Re , it is the Darcy–Weisbach factor f D. Which friction factor is plotted in a Moody diagram may be determined by inspection if the publisher did not include the formula described above: Observe the ...
In turbulent flow the flow rate is proportional to the square root of the pressure gradient, as opposed to its direct proportionality to pressure gradient in laminar flow. Using the definition of the Reynolds number we can see that a large diameter with rapid flow, where the density of the blood is high, tends towards turbulence.
In the case of laminar flow, for a circular cross section: =, =, where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well ...
[1]: 336 A value between one and 10 is characteristic of slug flow or laminar flow. [2] A larger Nusselt number corresponds to more active convection, with turbulent flow typically in the 100–1000 range. [2] A similar non-dimensional property is the Biot number, which concerns thermal conductivity for a solid body rather than a fluid.
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.
is the flow velocity relative to the object (meters per second). Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow
Ads
related to: laminar flow calculation