Search results
Results from the WOW.Com Content Network
Gliding motility is a type of translocation used by microorganisms that is independent of propulsive structures such as flagella, pili, and fimbriae. [1] Gliding allows microorganisms to travel along the surface of low aqueous films. The mechanisms of this motility are only partially known.
A plane joint (arthrodial joint, gliding joint, plane articulation) is a synovial joint which, under physiological conditions, allows only gliding movement. Plane joints permit sliding movements in the plane of articular surfaces. The opposed surfaces of the bones are flat or almost flat, with movement limited by their tight joint capsules.
A multiaxial joint, such as the hip joint, allows for three types of movement: anterior-posterior, medial-lateral, and rotational. A multiaxial joint (polyaxial joint or triaxial joint) is a synovial joint that allows for several directions of movement. [9] In the human body, the shoulder and hip joints are multiaxial joints. [10]
These cellular movements can be directed by external stimuli, a phenomenon known as taxis. Examples include chemotaxis (movement along chemical gradients) and phototaxis (movement in response to light). Motility also includes physiological processes like gastrointestinal movements and peristalsis.
The Joints are structures that connect individual bones and may allow bones to move against each other to cause movement. There are three divisions of joints, diarthroses which allow extensive mobility between two or more articular heads; amphiarthrosis , which is a joint that allows some movement, and false joints or synarthroses , joints that ...
Unlike twitching and gliding motilities, which are active movements where the motive force is generated by the individual cell, sliding is a passive movement. It relies on the motive force generated by the cell community due to the expansive forces caused by cell growth within the colony in the presence of surfactants, which reduce the friction ...
Humeroradial joint: head of the radius: capitulum of the humerus: Is a ball-and-socket joint. Superior radioulnar joint: head of the radius: radial notch of the ulna: In any position of flexion or extension, the radius, carrying the hand with it, can be rotated in it. This movement includespronation and supination.
For example, studies frequently combine EMG and kinematics to determine motor pattern, the series of electrical and kinematic events that produce a given movement. Optogenetic perturbations are also frequently combined with kinematics to study how locomotor behaviors and tasks are affected by the activity of a certain group of neurons.