Search results
Results from the WOW.Com Content Network
Asparagine (symbol Asn or N [2]) is an α-amino acid that is used in the biosynthesis of proteins.It contains an α-amino group (which is in the protonated −NH + 3 form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO − form under biological conditions), and a side chain carboxamide, classifying it as a polar (at physiological pH), aliphatic ...
These six are alanine, aspartic acid, asparagine, glutamic acid, serine, [2] and selenocysteine (considered the 21st amino acid). Pyrrolysine (considered the 22nd amino acid), [3] which is proteinogenic only in certain microorganisms, is not used by and therefore non-essential for most organisms, including humans.
Asparaginase is an enzyme that is used as a medication and in food manufacturing. [6] [7] As a medication, L-asparaginase is used to treat acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LBL). [6] It is given by injection into a vein, or muscle. [6] A pegylated version is also available. [8] In food manufacturing it is used to ...
3-Hydroxyasparagine also known as β-hydroxyasparagine (beta-hydroxyasparagine) is a modified asparagine amino acid. It appears in posttranslational modification of cbEGF-like domains which can occur in humans and other Eukaryotes. The amino acid code used for this is Hyn. The modified amino acid residue is found in fibrillin-1. [1]
Escherichia coli derived asparagine synthetase is a dimeric protein with each subunit folding into two distinct domains. [4] The N-terminal region consists of two layers of six-stranded antiparallel β-sheets between which is the active site responsible for the hydrolysis of glutamine. [4]
In the asparagine synthetase reaction, ATP is used to activate aspartate, forming β-aspartyl-AMP. Glutamine donates an ammonium group, which reacts with β-aspartyl-AMP to form asparagine and free AMP. The biosynthesis of aspartate and asparagine from oxaloacetate. Two asparagine synthetases are found in bacteria.
The systematic name of this enzyme class is L-asparagine:tRNAAsn ligase (AMP-forming). Other names in common use include asparaginyl-tRNA synthetase , asparaginyl-transfer ribonucleate synthetase , asparaginyl transfer RNA synthetase , asparaginyl transfer ribonucleic acid synthetase , asparagyl-transfer RNA synthetase , and asparagine translase .
Met is essential for humans. Always the first amino acid to be incorporated into a protein, it is sometimes removed after translation. Like cysteine, it contains sulfur, but with a methyl group instead of hydrogen. This methyl group can be activated, and is used in many reactions where a new carbon atom is being added to another molecule ...