Search results
Results from the WOW.Com Content Network
Soon after it appeared, the book received positive reviews by reputed researchers in the area of theoretical computer science. In his review, Ronald V. Book recommends the book to "anyone who wishes to learn about the subject of NP-completeness", and he explicitly mentions the "extremely useful" appendix with over 300 NP-hard computational problems.
NP and co-NP together form the first level in the polynomial hierarchy, higher only than P. NP is defined using only deterministic machines. If we permit the verifier to be probabilistic (this, however, is not necessarily a BPP machine [6]), we get the class MA solvable using an Arthur–Merlin protocol with no communication from Arthur to Merlin.
An important unsolved problem in complexity theory is whether the graph isomorphism problem is in P, NP-complete, or NP-intermediate. The answer is not known, but it is believed that the problem is at least not NP-complete. [20] If graph isomorphism is NP-complete, the polynomial time hierarchy collapses to its second level. [21]
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
The theory of computation can be considered the creation of models of all kinds in the field of computer science. Therefore, mathematics and logic are used. In the last century, it separated from mathematics and became an independent academic discipline with its own conferences such as FOCS in 1960 and STOC in 1969, and its own awards such as the IMU Abacus Medal (established in 1981 as the ...
In theoretical computer science, the closest string is an NP-hard computational problem, [1] which tries to find the geometrical center of a set of input strings. To understand the word "center", it is necessary to define a distance between two strings. Usually, this problem is studied with the Hamming distance in mind.
In the guillotine cutting problem, both the items and the "bins" are two-dimensional rectangles rather than one-dimensional numbers, and the items have to be cut from the bin using end-to-end cuts. In the selfish bin packing problem, each item is a player who wants to minimize its cost. [53]
NP-hard Class of problems which are at least as hard as the hardest problems in NP. Problems that are NP-hard do not have to be elements of NP; indeed, they may not even be decidable. NP-complete Class of decision problems which contains the hardest problems in NP. Each NP-complete problem has to be in NP. NP-easy