Search results
Results from the WOW.Com Content Network
Glycerol is a good alternative source for butanol production. While glucose sources are valuable and limited, glycerol is abundant and has a low market price because it is a waste product of biodiesel production. Butanol production from glycerol is economically viable using metabolic pathways that exist in the bacterium Clostridium pasteurianum ...
Butyraldehyde is a component in the two-step synthesis of trimethylolpropane, which is used for the production of alkyd resins. [ 5 ] A major use of butyraldehyde is in the production of bis(2-ethylhexyl) phthalate , a major plasticizer.
Butanol's only major disadvantages are its high flashpoint (35 °C or 95 °F), toxicity (note that toxicity levels exist but are not precisely confirmed), and the fact that the fermentation process for renewable butanol emits a foul odour. The Weizmann organism can only tolerate butanol levels up to 2% or so, compared to 14% for ethanol and yeast.
Butanol combustion: C 4 H 9 OH + 6O 2 → 4CO 2 + 5H 2 O + heat Propanol combustion: 2C 3 H 7 OH + 9O 2 → 6 CO 2 + 8H 2 O + heat The 3-carbon alcohol, propanol (C 3 H 7 OH), is not often used as a direct fuel source for petrol engines (unlike ethanol, methanol and butanol), with most being directed into use as a solvent. However, it is used ...
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
The production of butanol by biological means was first performed by Louis Pasteur in 1861. [5] In 1905, Austrian biochemist Franz Schardinger found that acetone could similarly be produced. [ 5 ] In 1910 Auguste Fernbach (1860–1939) developed a bacterial fermentation process using potato starch as a feedstock in the production of butanol.
The largest use of 1-butanol is as an industrial intermediate, particularly for the manufacture of butyl acetate (itself an artificial flavorant and industrial solvent). It is a petrochemical derived from propylene. Estimated production figures for 1997 are: United States 784,000 tonnes; Western Europe 575,000 tonnes; Japan 225,000 tonnes. [8]
In the context of butanol fuel, isobutyraldehyde is of interest as a precursor to isobutanol. E. coli as well as several other organisms has been genetically modified to produce isobutanol. α-Ketoisovalerate, derived from oxidative deamination of valine, is prone to decarboxylation to give isobutyraldehyde, which is susceptible to reduction to the alcohol: [3]