Search results
Results from the WOW.Com Content Network
The quantity is called the relative redundancy and gives the maximum possible data compression ratio, when expressed as the percentage by which a file size can be decreased. (When expressed as a ratio of original file size to compressed file size, the quantity R : r {\displaystyle R:r} gives the maximum compression ratio that can be achieved.)
Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [ 1 ] [ 2 ] [ 3 ] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.
Minimum redundancy feature selection is an algorithm frequently used in a method to accurately identify characteristics of genes and phenotypes and narrow down their relevance and is usually described in its pairing with relevant feature selection as Minimum Redundancy Maximum Relevance (mRMR).
Mutual information has been used as a criterion for feature selection and feature transformations in machine learning. It can be used to characterize both the relevance and redundancy of variables, such as the minimum redundancy feature selection. Mutual information is used in determining the similarity of two different clusterings of a dataset.
Machine Learning experiments are reproducible, so the statistics of the generating process exhibit stationarity. In a sense made precise by theoretical neuroscientists working on the free energy principle , the statistical manifold in question possesses a Markov blanket .
What are (necessary and sufficient) conditions for consistency of a learning process based on the empirical risk minimization principle? Nonasymptotic theory of the rate of convergence of learning processes How fast is the rate of convergence of the learning process? Theory of controlling the generalization ability of learning processes
Consequently, representer theorems provide the theoretical basis for the reduction of the general machine learning problem to algorithms that can actually be implemented on computers in practice. The following provides an example of how to solve for the minimizer whose existence is guaranteed by the representer theorem.
For example, repeated throws of loaded dice will produce a sequence that is i.i.d., despite the outcomes being biased. In signal processing and image processing, the notion of transformation to i.i.d. implies two specifications, the "i.d." part and the "i." part: i.d. – The signal level must be balanced on the time axis. i.