Search results
Results from the WOW.Com Content Network
GPS surveying differs from other GPS uses in the equipment and methods used. Static GPS uses two receivers placed in position for a considerable length of time. The long span of time lets the receiver compare measurements as the satellites orbit. The changes as the satellites orbit also provide the measurement network with well conditioned ...
A surveyor uses a GNSS receiver with an RTK solution to accurately locate a parking stripe for a topographic survey. Real-time kinematic positioning (RTK) is the application of surveying to correct for common errors in current satellite navigation (GNSS) systems. [1]
GPS receivers come in a variety of formats, from devices integrated into cars, phones, and watches, to dedicated devices such as those shown above. The first portable GPS survey unit, a Leica WM 101, displayed at the Irish National Science Museum at Maynooth
Precise positioning is increasingly used in the fields including robotics, autonomous navigation, agriculture, construction, and mining. [2]The major weaknesses of PPP, compared with conventional consumer GNSS methods, are that it takes more processing power, it requires an outside ephemeris correction stream, and it takes some time (up to tens of minutes) to converge to full accuracy.
These dual-frequency GPS receivers typically cost US$10,000 or more, but can have positioning errors on the order of one centimetre or less when used in carrier phase differential GPS mode. Survey-grade GNSS receiver industry include a relatively small number of major players who specialize in the design of complex dual-frequency GNSS receivers ...
DGPS Reference Station (choke ring antenna)A reference station calculates differential corrections for its own location and time. Users may be up to 200 nautical miles (370 km) from the station, however, and some of the compensated errors vary with space: specifically, satellite ephemeris errors and those introduced by ionospheric and tropospheric distortions.
Geopositioning can be referred to both global positioning and outdoor positioning, using for example GPS, and to indoor positioning, for all the situations where satellite GPS is not a viable option and the localization process has to happen indoors. For indoor positioning, tracking and localization there are many technologies that can be used ...
GPS signals can also be affected by multipath issues, where the radio signals reflect off surrounding terrain; buildings, canyon walls, hard ground, etc. These delayed signals cause measurement errors that are different for each type of GPS signal due to its dependency on the wavelength.